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Abstract

The little greenbul, a common rainforest passerine from sub-Saharan Africa, has

been the subject of long-term evolutionary studies to understand the mechanisms

leading to rainforest speciation. Previous research found morphological and beha-

vioural divergence across rainforest–savannah transition zones (ecotones), and a

pattern of divergence with gene flow suggesting divergent natural selection has

contributed to adaptive divergence and ecotones could be important areas for rain-

forests speciation. Recent advances in genomics and environmental modelling make

it possible to examine patterns of genetic divergence in a more comprehensive fash-

ion. To assess the extent to which natural selection may drive patterns of differenti-

ation, here we investigate patterns of genomic differentiation among populations

across environmental gradients and regions. We find compelling evidence that indi-

viduals form discrete genetic clusters corresponding to distinctive environmental

characteristics and habitat types. Pairwise FST between populations in different habi-

tats is significantly higher than within habitats, and this differentiation is greater

than what is expected from geographic distance alone. Moreover, we identified 140

SNPs that showed extreme differentiation among populations through a genome-

wide selection scan. These outliers were significantly enriched in exonic and coding

regions, suggesting their functional importance. Environmental association analysis

of SNP variation indicates that several environmental variables, including tempera-

ture and elevation, play important roles in driving the pattern of genomic diversifica-

tion. Results lend important new genomic evidence for environmental gradients

being important in population differentiation.
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1 | INTRODUCTION

Rainforests are heralded for their exceptionally high biological diver-

sity, yet the evolutionary mechanisms for the generation and mainte-

nance of this diversity have been debated for decades (Beheregaray,

Cooke, Chao, & Landguth, 2015; Haffer, 1969; Hoorn et al., 2010;

Martin, 1991; Mayr & O’Hara, 1986; Moritz, Patton, Schneider, &

Smith, 2000; Ogden & Thorpe, 2002; Price, 2008; Ribas, Aleixo,

Nogueira, Miyaki, & Cracraft, 2011; Schluter, 2009; Schneider, Smith,

Larison, & Moritz, 1999; Smith, Wayne, Girman, & Bruford, 1997;

Smith et al., 2014). Models of rainforest speciation abound. Some

emphasize the importance of neutral processes, for example genetic

drift in allopatric populations isolated by historical refugia (Haffer,

1969), and some favour processes such as landscape change (Hoorn

et al., 2010; Ribas et al., 2011) or dispersal (Smith et al., 2014), while

others point towards a dominant role of divergent natural selection
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across ecological gradients and ecotones (Beheregaray et al., 2015;

Ogden & Thorpe, 2002; Schluter, 2009; Schneider et al., 1999; Smith

et al., 1997, 2005, 2011). Each process is expected to shape the gen-

omes of natural populations in different ways, leaving a signal that pro-

vides insights into the evolutionary mechanisms that may have led to

divergence. Such information is of importance not only to evolutionary

geneticists interested in understanding the processes involved in spe-

ciation, but also to conservation decision-makers, who are interested

in preserving biodiversity and prioritizing new regions for protection in

the face of rapid anthropogenic and climate change.

In this study, we explore the roles that population-level processes

play in shaping biodiversity in Central Africa by examining the genomic

diversity in a common songbird, the little greenbul (Andropadus virens).

The little greenbul provides a particularly useful taxon for this enquiry

because it has a broad geographic distribution across sub-Saharan

Africa where it occurs in ecologically diverse habitats and has been the

subject of long-term studies of intraspecific diversity and speciation. In

the case of A. virens, as well as some other rainforest taxa, the rain-

forest–savannah transition zones (ecotones) have been shown to drive

phenotypic divergence and likely speciation (Freedman, Thomassen,

Buermann, & Smith, 2010; Kirschel, Blumstein, & Smith, 2009; Mitch-

ell, Locatelli, Sesink Clee, Thomassen, & Gonder, 2015; Nadis, 2016;

Smith et al., 1997, 2005). Compared to the central rainforest, ecotone

habitats differ dramatically in numerous ways. For example, ecotones

have less tree cover, lower levels of precipitation and greater intra-

annual variation in environmental variables. These ecological differ-

ences may lead to distinctive food resources, pathogens, acoustic

environments and predation levels (Slabbekoorn & Smith, 2002; Smith

et al., 2005, 2013). Consequently, these differences in both abiotic

and biotic environments are hypothesized to result in divergent selec-

tion in ecotone and rainforest populations, leading to locally adapted

populations (Freedman et al., 2010; Kirschel et al., 2009, 2011; Sehgal

et al., 2011; Smith et al., 1997, 2005). This hypothesis is supported by

the fact that parapatric A. virens populations across rainforest–ecotone

gradients have undergone significant divergence in morphological (i.e.,

body mass, wing, tail, tarsus and beak length) and vocal characteristics

despite significant levels of gene flow (Kirschel et al., 2011; Slabbe-

koorn & Smith, 2002; Smith et al., 1997, 2005, 2013). This pattern of

divergence with gene flow and the role of ecotones in driving adaptive

divergence is further supported by the fact that allopatric rainforest

populations of A. virens that were geographically isolated in West and

Central Africa for two million years had much lower levels of pheno-

typic divergence in these traits compared to the level of divergence

observed across a narrow (often 100 km) rainforest–ecotone gradient

(Smith et al., 2005). Together, results for A. virens and those from

other species suggest that strong divergent natural selection across

the rainforest–savannah ecotone transition contributes to adaptive

phenotypic divergence despite high levels of ongoing gene flow

(Smith, Schneider, & Holder, 2001; Smith et al., 1997, 2005). Evidence

for divergence with gene flow in A. virens is also consistent with mod-

els of ecological speciation where natural selection caused by shifts in

ecology or invasions of new habitats can result in divergence in fit-

ness-related traits and might play a prominent role in speciation

(Beheregaray et al., 2015; Ogden & Thorpe, 2002; Orr & Smith, 1998;

Rundle & Nosil, 2005; Schluter, 2009; Schneider et al., 1999). Oppor-

tunities for this kind of divergence are possible across the little green-

bul range, as they occur across a wide diversity of habitats, including

mountains and islands, which are also known as hot spots of diversifi-

cation and speciation (Darwin, 1859; Myers, Mittermeier, Mittermeier,

da Fonseca, & Kent, 2000; Orme et al., 2005). Previous research has

found that, compared to A. virens populations in mainland rainforests,

mountain and island populations also show significant divergence in

morphological traits typically related to fitness in birds, including body

mass, wing length, tail length, tarsus length and bill size (Smith et al.,

2005). Moreover, both habitats have considerable gene flow with

mainland rainforest populations in Lower Guinea (Smith et al., 2005),

suggesting natural selection may play an important role in divergence

of mountain and island populations in A. virens.

To date, the paucity of high-resolution genomic data for rainforest

species such as A. virens hinders a full exploration of the evolutionary

mechanisms that may be important for diversification. Previous

genetic studies on A. virens population structure utilized a handful of

mtDNA markers (Smith et al., 2001) and microsatellite loci (Smith

et al., 2005). These limited resources were unable to differentiate eco-

tone and forest populations at the genetic level; therefore, debates still

remain whether the observed phenotypic divergence might be the

result of plasticity in traits in response to varying environmental condi-

tions, or strictly genomic divergence between populations in ecotone

and rainforest. Recent development of next-generation sequencing

techniques (NGS), especially restriction site-associated DNA (RAD)

sequencing, enables one to de novo assemble hundreds of thousands

of RAD loci across the genome in hundreds of samples without a refer-

ence genome. This cost-effective method to produce genomewide

population data provides unprecedented opportunities to assess the

patterns of diversity with much greater resolution, to find potential

population structure and to identify candidate loci under local selec-

tion in nonmodel species such as A. virens.

Here, we take a population genomic approach leveraging single

nucleotide polymorphism (SNP) data generated from RAD sequenc-

ing to survey the genomewide diversity of A. virens across multiple

ecological habitats in Cameroon and Equatorial Guinea, including

rainforests, ecotones, mountains, as well as an island. Our specific

objectives for this approach were to (i) estimate overall levels of

genetic diversity in A. virens; (ii) determine population structure and

differentiation across habitats; (iii) identify candidate loci that are

potential targets of selection; (iv) understand the biological functions

of these candidate loci using transcriptome data; and (v) characterize

genetic turnover across environmental gradients.

2 | MATERIALS AND METHODS

2.1 | Sampling, DNA extraction and RADseq library
construction

For RAD sequencing, blood samples from adult Andropadus virens

were collected in Central Africa and stored in Queens lysis buffer
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(Smith et al., 1997, 2005). Overall, 217 samples were collected from

15 geographically distant sampling sites (Figure 1a), representing 15

populations. Sampling sites were classified into one of four habitat

types by researchers in the field and had previously been confirmed

using remote sensing data (Slabbekoorn & Smith, 2002; Smith et al.,

2005, 2013). Low-quality samples were removed by filtering, result-

ing in a total of 182 samples included in the final analysis (see RAD-

seq data bioinformatics processing below). This included seven

rainforest populations (83 samples), five ecotone populations (59

samples), two mountain populations (18 samples) and one population

from the island of Bioko (12 samples). Each population was repre-

sented by 5–22 samples, with a mean representation of 12 samples

(Table S1) (Nazareno, Bemmels, Dick, & Lohmann, 2017; Willing,

Dreyer, & van Oosterhout, 2012).

Restriction site-associated DNA library preparation followed the

methods for traditional RAD as described in Ali et al. (2016) that

were slightly modified from the original RAD protocol as described

in Baird et al. (2008). In short, genomic DNA (50 ng) for each sample

was digested with 2.4 units of SbfI-HF (New England Biolabs, NEB,

R3642L) at 37°C for 1 h in a 12 ll reaction volume buffered with

19 NEBuffer 4 (NEB, B7004S). Samples were heated to 65°C for

20 min, and then, 2 ll indexed SbfI P1 RAD adapter (10 nM) was

added to each sample. Ligation of inline barcoded P1 adaptors was

performed by combining 2 ll of the ligation mix (1.28 ll water,

0.4 ll NEBuffer 4, 0.16 ll rATP [100 mM, Fermentas R0441] with

0.16 ll T4 DNA Ligase [NEB, M0202M]) and heating at 20°C for

1 h followed by incubation at 65°C for 20 min. Following the liga-

tion, half the per sample volume or 5 ll of each of the 96 samples

was pooled into a single tube and cleaned using 19 Agencourt

AMPure XP beads (A63881; Beckman Coulter); the remainder of the

sample was stored for use in an additional library preparation if

needed. The pooled DNA was then resuspended in 100 ll low TE

and sheared to an average fragment size of 500 base pairs using a

Bioruptor NGS sonicator (Diagenode). Sheared DNA was then con-

centrated to 55.5 ll using Ampure XP beads and used as the tem-

plate in the NEBNext Ultra DNA Library Prep Kit for Illumina (NEB

E7370L; version 1.2). The NEBNext protocol for library prep was fol-

lowed apart from the fact that we used custom P2 adaptors which

were created by annealing an NEBNext Multiplex Oligo for Illumina

(NEB, E7335L) to the oligo GATCGGAAGAGCACACGTCTGAACTCC

AGTCACIIIIIIATCAGAACA*A (the * represents a phosphorothioate

DNA base). In addition, instead of the USER� enzyme step, we used

a universal P1 RAD primer (AATGATACGGCGACCACCGAGATCTAC

ACTCTTTCCCTACACGAC*G) and a universal P2 RAD primer

(CAAGCAGAAGACGGCATACG*A) during final amplification. The

final RAD library was cleaned using AMPure XP beads and

sequenced at the UC Berkeley QB3 Vincent J Coates Genome

Sequencing Laboratory (GSL) on an Illumina HiSeq2000 (Illumina,

San Diego, CA, USA) using single-end 100-bp sequence reads.

2.2 | RADseq data bioinformatics processing

We used FastQC (http://www.bioinformatics.babraham.ac.uk/projec

ts/fastqc/) to assess overall data quality of each RADseq sequencing

run. To remove the lowest quality bases, we trimmed all raw

sequencing reads (100 bp) by 14 bp at the 30 end using seqtk

(https://github.com/lh3/seqtk). We processed RADseq reads using

the Stacks pipeline version 1.32 (Catchen, Amores, Hohenlohe,

Cresko, & Postlethwait, 2011; Catchen, Hohenloh, Bassham, Amores,

& Cresko, 2013) in the following manner. First, we demultiplexed

the trimmed data by P1 barcodes and removed low-quality reads

and those containing adapter sequences using process_radtags. After

demultiplexing, reads were 80 bp in length (without barcodes) and

data from different runs were combined together. These reads were

used to de novo assemble RAD loci using denovo_map.pl (parameter

settings: m = 3 M = 4 n = 4). The parameters for de novo assembly

were determined empirically to limit the impact of oversplitting of

loci following methods described in Ilut et al. (2014) and Harvey

et al. (2015). Specifically, we chose one sample that had a depth of

coverage close to the median depth coverage of all samples and ran

the de novo assembly over a wide range of values of M (1–8; n = M)

using ustacks. The percentage of homozygous and heterozygous loci

F IGURE 1 Sampling and population structure. (a), Sampling locations. Each point is a sampling location, and habitat types are indicated by
the same colour indicated in (b). (b–c), PCA using SNPs that have a minor allele frequency higher than 2%. Each point presents a sample, and
samples are coloured by habitat type (b) or by population (c)
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plateaued at M = 4, suggesting this value appropriately minimized

oversplitting of alleles (Fig. S1). Thus, we used M = 4 for the final

run on all samples. Stacks implements a multinomial-based likelihood

model for SNP calling, by estimating the likelihood of two most fre-

quently observed genotypes at each site and performing a standard

likelihood ratio test using a chi-square distribution (Catchen et al.,

2011; Hohenlohe et al., 2010). We used the default alpha (chi-

square significance level) of 0.05. Paralogous loci that were stacked

together were identified and removed by later quality control steps

built into Stacks (e.g., max number of stacks per loci = 3; Ilut et al.,

2014; Harvey et al., 2015). After the first round of assembly using

denovo_map.pl, we ran stacks’ correction mode (rxstacks-cstacks-

sstacks) using the bounded SNP model with a 0.05 upper bound for

the error rate (bound_high = 0.05). The rxstacks program made cor-

rections to genotype and haplotype calls based on population infor-

mation, rebuilt the catalog loci and filtered out loci with average log

likelihood <�8.0 (http://catchenlab.life.illinois.edu/stacks/).

We then identified a set of high-quality RAD loci for down-

stream population genetic analysis using the following steps. (i) We

only kept RAD loci if they were present in at least 80% of all sam-

ples, because loci that only assembled in small subset of samples

had limited utility in downstream analyses as well as possibly higher

error rates. (ii) We filtered out RAD loci that had more than 40 SNPs

along the 80-bp RAD loci sequence, as these likely represented

sequencing errors or overclustering of paralogous loci. In the final

data set, a maximum of 25 SNPs were recovered from a single RAD

locus. Because the alignments look reasonable for the RAD loci that

have higher number of SNPs, we did not apply any additional filters

to avoid introducing additional biases. (iii) We mapped the RAD loci

sequences from A. virens to the closest reference genome available,

the zebra finch genome (version 3.24), using BLAT, and removed

RAD loci that mapped to multiple positions in the zebra finch gen-

ome. (iv) We used BLAT to compare RAD loci sequences against

each other and removed ones that had a match. This step further

removes oversplitting RAD loci.

Following these filters, we obtained our final consensus set of

RAD loci (Table S2). Samples that were missing more than 20% of

the final consensus RAD loci were identified in a preliminary run and

were removed from final analysis because they likely had low-quality

DNA, low-quality libraries or low sequencing coverage. A total of

182 samples were included in the final data set (see above). Geno-

types were called and filtered using methods implemented in the

Stacks pipeline (Hohenlohe et al., 2010). We exported genotypes for

the final consensus RAD loci in VCF format using Stacks populations

program (only biallelic SNPs). Additional filters based on genotype

calls were performed in vcftools (https://vcftools.github.io/index.

html) or using custom scripts, which includes removing SNPs from

the last seven bp of the RAD loci as this part of the locus was

enriched for erroneous SNPs due to the lower sequencing quality at

the 30 end of reads, and filtering sites that have genotyping rate

<80% of all samples.

We used the resulting full SNP data set with SNPs from all fre-

quencies to estimate genetic diversity statistics such as number of

segregating sites (S), average pairwise differences (p) and Waterson’s

h (hw) in each population (Table S1). Rare SNPs that had a minor

allele frequency (MAF) < 2% in the whole sample set were subse-

quently removed using vcftools, and the remaining SNPs were used

for downstream analyses such as PCA, pairwise FST calculations,

BAYESCAN outlier analysis, and gradientForest analysis.

2.3 | RNA extraction, RNAseq library preparation
and transcriptome de novo assembly

Andropadus virens lacks a reference genome. To help determine

which of the RAD loci are transcribed, we collected RNAseq data

and made a de novo assembly of the A. virens transcriptome. Fresh

tissue samples were collected from 10 live individuals in the field

(five tissue types: blood, brain, breast tissue, heart and liver). Tissue

samples were stored in either PAXgene (Blood RNA Tubes; PreAna-

lytiX/Qiagen, Switzerland) or Allprotect (Tissue Reagent, Qiagen,

Germany) buffer and shipped to laboratory facilities at UCLA. RNA

was extracted from each sample and tissue type separately using an

RNeasy kit (Qiagen, Germany), and based on quality of extractions

(both overall concentration and 260/280 ratio), three RNA samples

from three tissue types (brain, heart and liver) were chosen to per-

form library preparations. RNAseq libraries were prepared using Illu-

mina TruSeq RNA Library PREP KIT V.2 (Illumina, San Diego,

California) following the manufacture’s protocol, and libraries were

indexed, normalized, pooled and sequenced on a single lane on Illu-

mina HiSeq 2500 (paired-end 100-bp reads, Rapid Run mode) at

GSL.

We obtained one lane of paired-end RNAseq data pooled from

three tissue types. We first removed bases with quality scores lower

than 20 and minimum sequence length of 30 bp using trim_galore

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). We

then pooled the remaining paired-end reads from different tissues

together for a de novo assembly of the transcriptome using the TRINITY

pipeline (Grabherr et al., 2011). We assessed the quality of the assem-

bly using scripts provided in the TRINITY package and predicted the cod-

ing regions in the assembled transcriptome using TransDecoder in

TRINITY.

2.4 | Detecting population structure using genomic
data

To detect underlying population structure among samples, we per-

formed a principal component analysis (PCA) using the bioconductor

package SNPRELATE (Zheng et al., 2012). A total of 47,482 SNPs with

MAF ≥ 2% were used in PCA. The first six principal components

were visually examined to identify clustering patterns of samples and

to determine whether these genetic clusters tend to segregate with

ecological factors or geography. We also used the program ADMIXTURE

(Alexander, Novembre, & Lange, 2009) to estimate the ancestry of

individual genotypes, using only the first SNP of each RAD loci to

limit the impact of linkage disequilibrium. The analysis was run for

K = 1–15.

ZHEN ET AL. | 4969

http://catchenlab.life.illinois.edu/stacks/
https://vcftools.github.io/index.html
https://vcftools.github.io/index.html
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/


To quantify pairwise population differentiation, we calculated

pairwise FST between populations using SNPrelate. The correlation of

population genetic differentiation (pairwise FST) and geographic dis-

tance, in other words, the presence of isolation by distance (IBD),

was estimated by a simple Mantel test with 999,999 permutations

using VEGAN2.2-1 in R (Mantel, 1967; Oksanen et al., 2017). Mantel

tests are reported using both raw FST and FST/(1�FST), as well as

both raw Euclidian geographic distance and log-transformed dis-

tances (Rousset, 1997; Slatkin, 1995).

Moreover, we found that pairwise FST between populations from

different habitats were higher than pairwise FST computed between

populations from the same habitat (see Results). In principle, this pat-

tern could solely be driven by isolation by distance as populations

from the same habitat tend to be located closer geographically to

each other compared to population from different habitats. To deter-

mine whether the elevated FST between populations from different

habitats (compared to FST between populations from the same habi-

tat) could be explained simply by the differences in geographic dis-

tance, we performed permutation tests that accounted for the fact

that populations from different habitats tend to be further apart.

Specifically, we divided the population pairs into five bins based

upon their geographic distances from each other (i.e., <200 km,

200–400 km, 400–600 km, 600–800 km, >800 km). Then, within

each bin, we permutated whether the pairwise FST values are from a

within-habitat comparison or a between-habitat comparison. We

generated 10,000 such permutations and, for each permutation, per-

formed a t test on whether the FST values for between-habitat com-

parisons were higher than those for within-habitat comparisons.

From the permuted data, we built a null distribution of t-statistics,

which accounted for the effect of geography. Our final empirical

p-value for the observed data was calculated as the percentage of

permutated data sets that had a t-statistic as large or larger than the

one seen in the original data. Similar permutation analyses were

applied to the data set including all habitats as well as to a data set

that only considered rainforest and ecotone populations. In the null

distribution of t-statistics for the test of whether FST is higher

between as compared to within habitats, we found that none of the

10,000 permutated data sets had a t-statistic of FST as large or larger

than the one seen in the original data, suggesting a p-value < 1e-04.

However, for the null distribution of t-statistics for the test of

whether distance is higher between or within habitats, 1,581 of the

10,000 permutated data sets had a t-statistic as large or larger than

the one seen in the original data, suggesting a p-value = .158. This

suggests that our null distribution of t-statistics accounts for the fact

that populations from similar habitats tend to be closer together

geographically.

As an alternative method to test whether habitat contributed to

the observed pattern of population differentiation above and beyond

geographic distance, we created a binary matrix that indicated

whether a pair of populations was from the same habitat or not. We

tested the correlation of genetic distance matrix and this matrix

while controlling for geographic distance using a partial Mantel test

using VEGAN 2.2-1 in R (Mantel, 1967; Oksanen et al., 2017). Partial

Mantel tests were performed using both raw FST and FST/(1�FST), as

well as both raw Euclidian geographic distance and log-transformed

distances (Rousset, 1997; Slatkin, 1995).

2.5 | Identifying outlier SNPs under selection

We used BAYESCAN2.1 (Foll & Gaggiotti, 2008) to identify highly dif-

ferentiated SNPs that are candidates to be under natural selection.

This program takes a Bayesian approach to search for SNPs exhibit-

ing extreme FST values that could be due to local adaptation. Outlier

SNPs were identified using SNPs with MAF ≥ 2% across all samples,

specifying all 15 populations or four habitats (see Data S1). We ran

5,000 iterations using prior odds of 10 and assessed the statistical

significance of a locus being an outlier using a false discovery rate

(FDR) of 5%.

To explore the spatial patterns of population differentiation

across chromosomes, we mapped the consensus RAD loci to the

zebra finch genome using BLAT with default parameters. For the

uniquely mapped RAD loci, we plotted the FST of each SNP by gen-

ome coordinates to examine spatial patterns of outlier SNPs. To

interpret the potential biological function of the outlier SNPs identi-

fied by Bayescan analysis, we used a zebra finch genome annotation

(v3.2.4.78) to identify outlier SNPs mapped to annotated genic

regions.

We further examined whether candidate loci under selection

were enriched in exonic (transcribed) or coding regions. To do this,

we mapped RAD loci to the de novo assembled A. virens transcrip-

tome using BLAT with default parameters. Any RAD locus that

mapped to the transcriptome was considered to be in exonic

regions of the genome, and the remaining RAD loci were labelled

“nontranscribed” regions of the genome. Similarly, we mapped RAD

loci to predicted coding sequences and categorized them into cod-

ing and noncoding RAD loci. We then used a one-sided Fisher’s

exact test to examine whether there was significant enrichment of

outlier loci in exon or coding regions of the genome. Finally, we

cross-checked these outliers to see whether there were any signifi-

cant associations with environment using latent factor mixed mod-

els (Frichot, Schoville, Bouchard, & Franc�ois, 2013) (see Data S1

for more details).

2.6 | Detecting environmental drivers of genomic
variation

In addition to population structure, we also tested whether allele

frequencies in different populations were associated with environ-

mental variables across the range of A. virens using the package

GRADIENTFOREST (Ellis, Smith, & Pitcher, 2012) in the R statistical

framework (R Core Team, 2014). Gradient forests are an extension

of random forests (Breiman, 2001) that treat response variables (in

this case, individual SNP minor allele frequencies within each popula-

tion) as members of a larger community (the total genome) and pro-

vide summary statistics based on ensembled forest runs to indicate

an overall association of changes in allele frequency to particular
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environmental variables (Ellis et al., 2012; Fitzpatrick & Keller, 2015).

Gradient forests were run using the following changes to the default

settings: number of trees run for each environmental variable = 500,

number of SNPs included in each bin = 1,000. Allelic frequencies

across the genome were predicted for unsampled geographic loca-

tions by generating a random set of 100,000 points across the range

of A. virens. Then, we used our final gradient forest model to predict

allele frequencies at each of those points, given their environmental

characteristics. Ordinary Kriging (Oliver & Webster, 1990) was then

used within ARCMAP (ESRI, Redlands, CA) to generate a continuous

surface across the known range of A. virens in Cameroon.

We used a suite of 17 environment variables (Table S6), includ-

ing bioclim measures of temperature and precipitation (n = 9; any

variables showing a Pearson’s correlation coefficient >0.7 were

removed) downloaded from the Worldclim database (www.worldc

lim.org), measures of vegetation and tree cover captured using the

NASA MODerate-resolution Imaging Spectroradiometer (MODIS,

n = 4), elevation and slope captured via the Shuttle Radar Topogra-

phy Mission (n = 2), and surface moisture estimates measures using

the Quick Scatterometer (QuikSCAT, n = 2). In addition to these

variables, and to account for purely geographic associations, we also

included Euclidean distances (measured as latitude and longitude) as

predictor variables in all models.

3 | RESULTS

3.1 | SNP discovery and overall genetic diversity

We used RAD sequencing to survey the genomewide diversity of

Andropadus virens. The final sample set included 15 populations from

four different habitats, including rainforests, ecotones, mountains

and an island (Figure 1a; Table S1). After removing low-quality reads

and samples, we obtained a total of 916 million reads for 182

A. virens samples (PRJNA390986). The number of raw sequence

reads per sample ranged from 1.60 to 20.73 million. On average,

99.2% of these reads were utilized in the de novo assembly of the

RAD loci. The mean coverage depth ranged from 169 to 1369 per

sample (mean = 389, median = 329, Fig. S2). Using this data set,

we assembled and identified 34,657 high-quality RAD loci that

passed our quality filters and were genotyped in more than 80% of

all final samples. On these 34,657 consensus RAD loci, there were a

total of 255,290 SNPs. The median number of SNPs per RAD locus

is seven. With a minimum minor allele frequency filter of 2%, we

retained 47,482 SNPs that were present on 23,882 RAD tags

(Table S2; Data S1).

The number of segregating sites ranges from 25,936 to 70,598

per population. Waterson’s h (hw) was estimated to be 0.0049–

0.0076/bp (mean = 0.0064/bp) and p ranges from 0.0034 to

0.0037/bp (mean = 0.0036/bp) (Table S1), which is comparable to p

estimated from other bird species (Nadachowska-Brzyska et al.,

2013; Romiguier et al., 2014). Overall levels of genetic diversity are

comparable in each habitat, including the island population

(Table S1). The finding that hw is larger than p indicates an excess of

low-frequency variants relative to the standard neutral model which

could be driven by recent population expansions.

3.2 | Transcriptome assembly and annotation

Transcriptome assembly was performed using 169 million paired-end

RNAseq data from three different tissue types (PRJNA390772). The

assembled transcriptome had a GC content of 45%. The average

contig length was 815 bp, and N50 was 1,619 bp. In total, trinity

produced 237,226 genes and 286,494 transcripts and predicted

81,018 coding sequences from these transcripts (Table S5). Of the

34,657 RAD loci we genotyped, 8412 RAD loci (24.2%) were

mapped to the de novo assembled A. virens transcriptome, and 3,618

RAD loci (10.4%) were mapped to the predicted coding sequences

(Fig. S3). The RAD tags overlapping coding sequence tend to have

fewer SNPs than those that do not overlap with coding sequences

(Fig. S4), consistent with the fact that the coding regions are likely

under stronger selective constraint.

3.3 | Population structure

We used PCA to identify population structure in little greenbuls. The

first two PCs revealed a clear clustering pattern of individuals from

the same habitats (Figure 1b). Populations from the island, moun-

tains, rainforests and ecotones formed four discrete clusters, sug-

gesting genomic divergence across ecological gradients and habitats.

Island and mountain populations were most distinct (Figure 1b);

however, samples from all four habitats separated on PC1, including

those from ecotone and rainforest habitats. PC2 further separated

island and mountain samples from rainforest and ecotone samples.

Remarkably, results suggest that, within rainforest and ecotone habi-

tats, individual populations could be distinguished solely on the basis

of genomic markers, mostly by PC1, with individuals from the same

sampling sites clustering together (Figure 1c). The level of separation

of ecotone populations from rainforest populations along PC1

approximately followed a latitudinal gradient, corresponding to envi-

ronmental and rainfall gradients that distinguish ecotone in the north

from rainforest in the south of Cameroon (see environmental analy-

ses below). Specifically, samples collected from sites Wakwa and

Ngaoundaba Ranch, towards the more extreme edge of the ecotone

habitat and having the most extreme ecotone environmental condi-

tions, formed clusters that were most distant from the rainforest

samples, while samples collected from Betare Oya, at lower ecotone

that was closest to the central rainforests, formed a cluster closest

to the rainforest (Figure 1c). The pattern of genomic differentiation

across habitats was confirmed using the program ADMIXTURE (Fig. S5).

Pairwise FST between populations ranged from 0.017 to 0.078

(mean = 0.038; Figure 2a–b; Table S3), indicating low overall levels

of genomic differentiation across populations. There was significant

correlation between pairwise FST and geographic distance between

the populations (Mantel r = .34; mantel simulated p-value = .003),

suggesting isolation by distance contributes to population differenti-

ation. However, pairwise FST between populations from different
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habitats was significantly higher than pairwise FST between popula-

tions within the same habitat (one tailed t test, p-value = 1.36e-

10; Figure 2a). Pairwise geographic distances between populations

from different habitats were also significantly higher than pairwise

distances between populations within the same habitat (one tailed

t test, p-value = 1.015e-06). To account for the fact that popula-

tions from different habitats were also geographically further apart,

we performed a permutation test, where we randomized whether

a population pair was from the same or different habitats in dif-

ferent bins stratified by their geographic distance. Using permu-

tated data sets, we built a null distribution of these t-statistics

(that already includes the effect of geographic distance), which we

used to evaluate the significance of our observed value. The

higher FST value for between-habitat comparison was highly signifi-

cant when compared to this improved null distribution (p-

value < 1e-04, Figure 2c and Fig. S6), suggesting that isolation by

distance alone cannot explain the higher FST between habitats

than within habitats. Similarly, only considering rainforest and eco-

tone populations, pairwise FST was significantly higher between

habitats as compared to within habitats (one tailed t test,

p-value = 9.793e-05). Application of the same permutation test

shows the higher FST between ecotone and rainforest populations

F IGURE 2 Pairwise population differentiation. (a), Pairwise FST between populations correlates with pairwise geographic distance between
populations. Empty circles denote pairs of populations from the same type of habitat (shown by the colour of the circle). Solid circles are pairs
of populations from different types of habitats (shown by colours of the circle and inside). (b), Heat map of pairwise FST. Sampling locations are
grouped by habitat type on both axes. (c) and (d), The pairwise FST of populations from different habitats is greater than the pairwise FST of
populations from the same habitat, even at the same geographic distance. (c) includes all populations from four habitats, and (d) includes only
rainforest and ecotone populations. Histogram shows the null distribution of t-statistics generated by 10000 permutations of habitats within
different bins of geographic distance (see Methods). Red dot shows the observed value
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(p-value = .0055) cannot be explained by geographic distance alone

(Figure 2d and Fig. S6).

To confirm this finding using an alternative statistical approach,

we used partial Mantel tests to determine the contribution of habitat

types of population pairs to their genetic differentiation (FST), con-

trolling for geographic distance. We found a highly significant and

positive correlation between genetic distance and whether a pair of

population comes from the same habitat, and greater genetic differ-

entiation (higher FST) from between-habitat populations compared to

within-habitat populations, while controlling for geographic distance

(Table 1). Taken together, these results suggest that factors other

than geographic location, such as local adaptation, significantly con-

tribute to population differentiation between habitats.

In addition, mountain and island populations were more diverged

from other populations (Figure 2b). Interestingly, FST between two

mountain populations were exceptionally high (FST = 0.060) com-

pared to other within-habitat pairwise FST (ranging from 0.017 to

0.040, Figure 2a), despite the fact that the two mountain popula-

tions were geographically very close to each other. The FST values

between mountain populations and lowland forest/ecotone popula-

tions were larger than pairwise FST values between lowland popula-

tions, suggesting mountain populations are highly differentiated both

from one another and from lowland populations.

3.4 | Candidate loci under selection

To further explore potential candidate loci under selection, we iden-

tified SNPs with extreme allele frequency differences across popula-

tions, which should be enriched by targets of local adaptation. We

identified 140 outlier SNPs across all populations with a false discov-

ery rate of 5% using BAYESCAN. These candidate SNPs are potential

targets of divergent selection across different sampling sites

(Fig. S7). The 140 outlier SNPs reside in 119 loci, and 40 of these

loci mapped to the zebra finch genome (Fig. S9). Of these, 36

mapped to main scaffolds of known chromosomes and four mapped

to the Z chromosome. Only 13 of these outlier loci mapped to anno-

tated genic regions on the zebra finch genome and nine mapped to

genes with functional annotations (Table S4).

To uncover the functional significance of outlier loci, we used the

de novo assembly of greenbul transcriptome to partition the RAD loci

and SNPs into different categories depending on whether they

mapped to coding regions or transcribed (exonic) regions (Fig. S10).

This enabled us to test for enrichment of outlier SNPs in putatively

functional regions. Of the 47,482 SNPs, 9677 mapped to the tran-

scriptome, and 42 were outliers based on a Bayescan analysis. Using

a one-sided Fisher’s exact test, we detected significant enrichment of

outlier loci in exonic regions of the genome (p = .0044; Table S2;

Fig. S10). Using the predicted coding sequence from the transcrip-

tome, 3,602 SNPs mapped to the predicted coding sequences and 21

of these were outliers. We again detected a significant enrichment of

outlier SNPs in protein-coding sequences (p = .002; Table S2;

Fig. S10). Taken together, these enrichment results provide additional

confidence that the outlier loci found using Bayescan captured func-

tionally important, biologically relevant genetic variants, which were

not merely loci that fell within the tail of a neutral distribution.

3.5 | Genomic turnover across environments

Because some environmental adaptation may involve shifts in allele fre-

quency at many loci across the genome (e.g., polygenic selection involv-

ing many genes of small effect), we used the gradientForest approach to

look for correlations in allele frequencies associated with environmental

variables. A total of 7238 SNPs, ~15% of all SNPs, had R2 values above

0 (0.0073–0.83) when testing for a correlation between frequency and

an environmental variable. Of the 19 environmental and geographic

variables included in models (Table S6), variables capturing temperature

variation (Min Temp: minimum temperature of the coldest month,

Temp Range: mean diurnal temperature range and Mean temp: mean

annual temperature) and elevation were most important in explaining

environmentally associated variation in SNPs (Figure 3a). In some

cases, measures of surface moisture or tree cover were also important,

but axes for these variables largely overlapped with temperature or ele-

vation measures along PC plot (likely the result of colinearity in envi-

ronmental variables) (Figure 3b). Results from LFMM analyses

indicated these same variables were also associated with differentiation

observed at hundreds of individual loci, although exact functions of

these regions remain unknown (see Data S1).

Geographic variables alone were not as important in explaining

variation in allele frequency, again suggesting that geographic dis-

tance cannot fully account for all variation in SNP frequencies across

the range of little greenbuls. Above and beyond neutral processes,

selective pressures imposed by differences in these environments

best explains the observed genomic patterns of variation. Predictions

across Cameroon suggest strong genomic turnover (defined as coor-

dinated shifts in allele frequencies across the genome) throughout

the forest, savannah and ecotone regions, with diagnostic genomic

TABLE 1 Simple Mantel test for IBD (isolation by distance) and
partial Mantel test for the effect of habitat

Simple Mantel test: Test for IBD

Correlation between Mantel r p

FST Nontransformed distance .34 .003

FST Log-transformed distance .29 .008

FST/(1�FST) Log-transformed distance .28 .007

Partial Mantel test: Test for the effect of habitat while controlling for
IBD

Correlation between Control for Mantel r p

FST same habitat

or not

nontransformed

distance

.48 9.00E-06

FST same habitat

or not

log-transformed

distance

.50 1.00E-06

FST/(1�FST) same habitat

or not

log-transformed

distance

.50 3.00E-06

p-Values were generated by 999,999 permutations. Here, “distance”
refers to the geographic distance separating the pair of populations on

which the FST value was computed.
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variation occurring in each of these habitats (Figure 3). Distinct SNP

frequencies at high elevations (Figure 3b–c) and the fact that eleva-

tion explains a large proportion of variation of allele frequencies in

the greenbul genome (largely allied with PC1, Figure 3b) also suggest

a unique genetic signature in populations at elevation.

4 | DISCUSSION

In this study, we used genomewide RADseq SNPs to characterize

the overall level of genetic diversity in Andropadus virens populations

across four different habitats. We found evidence of population

structure of A. virens consistent with habitat type and previously

observed phenotypic divergence. We demonstrated that population

differentiation across habitats cannot be explained solely by isolation

by distance, suggesting local adaptation further contributes to geno-

mic divergence among habitats. We identified 140 outlier SNPs that

are potential targets of selection and the fact that they are signifi-

cantly enriched in exonic and coding regions suggests they are func-

tionally important. Environmental association analysis further

supports this conclusion and shows environmental variables, includ-

ing temperature and elevation, are highly associated with patterns of

genomic variation across the range of the little greenbul.

In addition to the differences between rainforest and ecotone

populations, other habitats were found to harbour distinct patterns

of genetic variation. The population from Bioko Island formed a

distinctive genetic cluster based on PCA and also was identified as

distinct in environmental association models (Figures 1b and 3), con-

sistent with previous studies (Smith et al., 2005). Bioko Island is

32 km off the coast of Africa, separated from mainland

~10,000 years ago and has an area of 2,017 km2. Island populations

and species may have smaller effective population sizes than main-

land populations or sister taxa (Robinson et al., 2016), due to

possible population bottlenecks and considerably smaller ranges. As

a result, island populations may have lower genetic diversity com-

pared to their mainland counterparts (Frankham, 1997). However, in

our study, the estimates of genetic variation using genomewide SNP

markers in the greenbul population on Bioko Island are comparable

to those from mainland populations (Table S1). This is consistent

with the recent findings that island populations do not always have

lower genetic diversity, particularly in birds (Francisco, Santiago,

Mizusawa, Oldroyd, & Arias, 2016; James, Lanfear, & Eyre-Walker,

2016), and the fact that Bioko island is a large island that only

recently separated from the mainland.

Tropical mountains are well known to support disproportionally

high biodiversity and are thought to be hotspots for avian speciation

(Drovetski et al., 2013; Fjelds�a, Bowie, & Rahbek, 2012; Fjelds�a,

Johansson, Lokugalappatti, & Bowie, 2007; Myers et al., 2000; Orme

et al., 2005; Roy, 1997; Smith et al., 2000). Little greenbuls are

found at elevations up to 2,400 m, where environmental variables,

particularly temperature and vegetation, change rapidly along altitu-

dinal gradients. Our two mountain populations have high FST despite

being geographically close and from same habitat type. Although the

Euclidean distance between these two mountain populations is

short, the environmental changes along altitudinal gradients are

steep, causing isolation between populations from different moun-

tains and forming “sky islands”, between which the level of gene

flow probably is much lower than among lowland populations. More-

over, we found that the two different mountain populations exhib-

ited the lowest within-population genetic variation among all

sampled populations (Table S1). While this difference was not statis-

tically significant (likely due to small sample sizes), this decreased

level of variation can inflate FST, the relative measurement of popula-

tion differentiation. It also suggests that mountain populations may

have overall smaller effective population sizes (consistent with pre-

sumably smaller suitable habitat size for mountain populations) and/

F IGURE 3 Environmental drivers of genomic variation. (a), Environmental and geographic variables ranked by their importance in explaining
SNP allele frequency variation. (b), PC plot indicates the contribution of the environmental variables to the predicted patterns of frequency
differentiation, with labelled vectors indicating the direction and magnitude of environmental gradients with greatest contribution. Open circles
are locations of actual sampling. (c), Predicted spatial variation in population-level genetic composition from SNPs. Red points in (c) are
locations where actual samples were collected in this study. Colours in (b) and (c) represent gradients in genomic turnover derived from
transformed environmental predictors. Locations with similar colours are expected to harbour populations with similar genetic composition
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or have experienced serial bottleneck/founder effects as range

expansions occurred. These processes can further contribute to

divergence due to stronger genetic drift within each subpopulation

leading to faster changes in allele frequencies. The idea that

elevation can drive genomic changes is supported by previous

estimates of morphological divergence (Smith et al., 2005) and

emphasizes the importance of preserving elevational gradients in

tropical ecosystems in general (Thomassen et al., 2011).

Most of the genes containing outlier SNPs only have annota-

tions predicted from human homologs, except two that have anno-

tations from bird species. Both of these two genes are of particular

interest. One outlier locus mapped to the 5UTR/coding junction of

EDIL3, a calcium-binding protein that has been found to function in

avian eggshell biomineralization (Marie et al., 2015). Avian eggshells

protect the developing embryo and keep the egg free from patho-

gens. Environmental factors such as temperature, humidity and par-

tial oxygen pressure have been reported to affect avian eggshell

structure, and previous studies documented rapid evolution of egg-

shell structure in response to colonization of novel environments in

the house finch (Stein & Badyaev, 2011). The second outlier locus

mapped to MLXIPL (MLX interacting protein-like), which is a coacti-

vator of the carbohydrate response element binding protein that has

been correlated with fat deposition in caged chickens (Li et al.,

2015; Proszkowiec-Weglarz, Humphrey, & Richards, 2008). Interest-

ingly, seven more genes that contain outlier SNPs have annotations

linked with metabolic traits or diseases in humans. For example, out-

lier SNPs were found in RGS6 (Sibbel et al., 2011 p. 6), CSAD

(Comuzzie et al., 2012) and the UNC13B intron (Tr�egouet et al.,

2008), which were associated with dietary fat intake, food prefer-

ence, adiposity/obesity and diabetes in humans. Although metabolic

traits were not measured, adult little greenbuls from the rainforest

have significantly smaller body mass and body size compared to

ecotone, mountain and island populations (Smith et al., 1997, 2005),

which could be the result of divergent selection of these genes

associated with metabolic traits. Several recent studies have dis-

cussed the limitations of identifying FST outlier as loci under diver-

gent selection and suggest results should be interpreted carefully,

because many other factors, including demographic history, recombi-

nation rate heterogeneity and background selection, may also create

FST outliers (Cruickshank & Hahn, 2014; Lotterhos & Whitlock,

2014; Roesti, Salzburger, & Berner, 2012). Current work to model

the demographic history of A. virens should help examine these vari-

ous possibilities in greater detail.

Numerous hypotheses have been proposed for how biodiversity

is generated in rainforests (Mayr & O’Hara, 1986; Moritz et al.,

2000). With the rapid advances in genomics and environmental mod-

elling in the last decade, it is now possible to examine these mecha-

nisms in greater depth. Using more powerful genomewide data, we

have shown, for the first time, strong patterns of population structure

and genomic differentiation between rainforest and ecotone habitats

in A. virens. Previously, no genetic differentiation was found between

morphologically divergent populations in rainforest and ecotone habi-

tats, leaving open the possibility that the observed morphological

difference could simply be the result of a homogenized meta-popula-

tion that differentially responds to environmental gradients. Although

identifying the underlying genetic basis of morphological traits that

differ between rainforest and ecotone populations was beyond the

scope of this study, our results complement previous work by

demonstrating that populations along the rainforest–ecotone gradient

are diverging at the genomic level, and raise the possibility that local

adaptation could account for the patterns of morphological variation

previously observed across ecotone–rainforest gradients. Results also

complement past research on reproductive behaviour, which found

differences in song characteristics along the forest–ecotone gradient,

and showed experimentally that singing males respond more aggres-

sively to male songs from their own habitat, suggesting incipient

reproductive isolation driven by habitat (Kirschel et al., 2011; Slabbe-

koorn & Smith, 2002; Smith et al., 2013). These patterns of differen-

tiation are consistent with models of ecological speciation, where

natural selection caused by shifts in ecology can promote speciation

(Beheregaray et al., 2015; Hanson, Moore, Taylor, Barrett, & Hendry,

2016; Ogden & Thorpe, 2002; Orr & Smith, 1998; Price, 2008;

R€as€anen & Hendry, 2008; Rundle & Nosil, 2005; Schluter, 2000,

2009; Schneider et al., 1999). However, further research is necessary

to more fully understand the evolutionary significance of divergence

across ecological gradients and ecotones. In particular, studies investi-

gating the underlying genetic basis of phenotypic differentiation and

mate choice experiments would provide additional insights into their

importance in divergence and speciation.
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